"I think data science is what will propel business in the future, and definitely my business in the future."
Nadia Chilmonik
A self-organizing map (SOM) is a type of machine learning algorithm, more popularly known as artificial intelligence, neural network.

A self-organizing map (SOM) is a type of machine learning algorithm, more popularly known as artificial intelligence, neural network. SOMs are trained using unsupervised learning. It is useful for reducing a high-dimensional space to two-dimensional or low-dimensional representation. Essentially you can take many objects with many traits with non-discrete or discrete values and watch as they organize themselves according to those traits.

As an example, let’s imagine the traits of planets. Planets have qualities including size, size of atmosphere, distance from the sun, amount of water, and primary color. So if we used the planets in a self-organizing map, they would rearrange in order to be closest to the other planets whose traits they have in common. This is an iterative process, so the map might start with Mars and Earth classified far apart in the two-dimensional space, because Mars may seem most similar to Jupiter on a first pass, being a primarily orange/red tone. But over iterations, they may reorganize to align based on other similarities, for instance similarities in size to Earth or distance to the Sun. As a result, Mars would end up somewhere in between. That component is dictated by the competitive learning that SOMs use instead of the typical error-correcting or back-propagation.

NASA has a wealth of data on planets. In the Planetary Data System website, you can search by category: Mars Science Lab, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, Rings, Asteroids, Comets, Planetary Dust, Earth's Moon, and Solar Wind. You can also search nodes: atmospheres, geosciences, cartography and imaging sciences, planetary plasma interactions, ring-moon systems, and small bodies. Take a look for yourself.

About Nadia

Nadia Chilmonik is a Brooklyn-based artist and engineer (and former ballerina) who is interested in space programs, data science, and predictive models. She has expertise in optimization algorithms, and works at Thicket Labs on collaborative intelligence.

Resources Used

The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively manage the archive to maximize its usefulness, and it has become a basic resource for scientists around the world. All PDS-produced products are peer-reviewed, well-documented, and easily accessible via a system of online catalogs that are organized by planetary disciplines.